Moving Average Dieses Beispiel lehrt, wie Sie den gleitenden Durchschnitt einer Zeitreihe in Excel berechnen. Ein gleitender Durchschnitt wird verwendet, um Unregelmäßigkeiten (Spitzen und Täler) zu glätten, um Trends leicht zu erkennen. 1. Erstens, werfen wir einen Blick auf unsere Zeitreihe. 2. Klicken Sie auf der Registerkarte Daten auf Datenanalyse. Hinweis: Klicken Sie hier, um das Analyse-ToolPak-Add-In zu laden. 3. Wählen Sie Verschiebender Durchschnitt aus, und klicken Sie auf OK. 4. Klicken Sie im Feld Eingabebereich auf den Bereich B2: M2. 5. Klicken Sie in das Feld Intervall und geben Sie 6 ein. 6. Klicken Sie in das Feld Ausgabebereich und wählen Sie Zelle B3 aus. 8. Zeichnen Sie ein Diagramm dieser Werte. Erläuterung: Da wir das Intervall auf 6 setzen, ist der gleitende Durchschnitt der Durchschnitt der letzten 5 Datenpunkte und der aktuelle Datenpunkt. Als Ergebnis werden Spitzen und Täler geglättet. Die Grafik zeigt eine zunehmende Tendenz. Excel kann den gleitenden Durchschnitt für die ersten 5 Datenpunkte nicht berechnen, da nicht genügend frühere Datenpunkte vorhanden sind. 9. Wiederholen Sie die Schritte 2 bis 8 für Intervall 2 und Intervall 4. Fazit: Je größer das Intervall, desto mehr werden die Spitzen und Täler geglättet. Je kleiner das Intervall, desto näher sind die gleitenden Mittelwerte, um die tatsächlichen Datenpunkte. Wie Berechnung der gleitenden Mittelwerte in Excel Excel-Datenanalyse für Dummies, 2. Edition Der Data Analysis-Befehl bietet ein Werkzeug für die Berechnung der Bewegung und exponentiell geglättete Mittelwerte in Excel. Nehmen Sie an, um zu veranschaulichen, dass Sie tägliche Temperaturinformationen gesammelt haben. Sie wollen den dreitägigen gleitenden Durchschnitt 8212 den Durchschnitt der letzten drei Tage 8212 als Teil einer einfachen Wettervorhersage berechnen. Gehen Sie folgendermaßen vor, um die gleitenden Mittelwerte für diesen Datensatz zu berechnen. Um einen gleitenden Durchschnitt zu berechnen, klicken Sie zuerst auf die Schaltfläche Data tab8217s Data Analysis. Wenn Excel das Dialogfeld Datenanalyse anzeigt, wählen Sie aus der Liste den Eintrag Moving Average aus, und klicken Sie dann auf OK. Excel zeigt das Dialogfeld "Gleitender Durchschnitt" an. Identifizieren Sie die Daten, die Sie verwenden möchten, um den gleitenden Durchschnitt zu berechnen. Klicken Sie im Dialogfeld "Gleitender Durchschnitt" in das Eingabebereichsfeld. Identifizieren Sie dann den Eingabebereich, indem Sie entweder eine Arbeitsbereichsadresse eingeben oder mit der Maus den Arbeitsbereich auswählen. Ihre Bereichsreferenz sollte absolute Zellenadressen verwenden. Eine absolute Zellenadresse steht vor dem Spaltennamen und der Zeilennummer mit Vorzeichen, wie in A1: A10. Wenn die erste Zelle in Ihrem Eingabebereich eine Textbeschriftung enthält, um Ihre Daten zu identifizieren oder zu beschreiben, aktivieren Sie das Kontrollkästchen Labels in First Row. Erklären Sie im Textfeld Interval, wie viele Werte in die gleitende Durchschnittsberechnung einbezogen werden sollen. Sie können einen gleitenden Durchschnitt mit einer beliebigen Anzahl von Werten berechnen. Standardmäßig verwendet Excel die letzten drei Werte, um den gleitenden Durchschnitt zu berechnen. Um festzulegen, dass eine andere Anzahl von Werten zur Berechnung des gleitenden Durchschnitts verwendet werden soll, geben Sie diesen Wert in das Textfeld Intervall ein. Sagen Sie Excel, wo die gleitenden Durchschnittsdaten platziert werden sollen. Verwenden Sie das Textfeld Ausgabebereich, um den Arbeitsblattbereich zu identifizieren, in dem Sie die gleitenden Durchschnittsdaten platzieren möchten. In dem Arbeitsblattbeispiel wurden die gleitenden Durchschnittsdaten in den Arbeitsblattbereich B2: B10 platziert. (Optional) Geben Sie an, ob ein Diagramm gewünscht wird. Wenn Sie ein Diagramm möchten, das die gleitenden Durchschnittsinformationen darstellt, aktivieren Sie das Kontrollkästchen "Diagrammausgabe". (Optional) Geben Sie an, ob Standardfehlerinformationen berechnet werden sollen. Wenn Sie Standardfehler für die Daten berechnen möchten, wählen Sie die Standardfehler Kasten überprüfen. Excel legt Standardfehlerwerte neben den gleitenden Mittelwerten fest. (Die Standardfehlerinformationen gehen zu C2: C10.) Nachdem Sie die Angabe, welche gleitenden durchschnittlichen Informationen Sie berechnen lassen möchten und wo Sie sie platzieren möchten, klicken Sie auf OK. Excel berechnet gleitende Durchschnittsinformationen. Hinweis: Wenn Excel doesn8217t über genügend Informationen verfügt, um einen gleitenden Durchschnitt für einen Standardfehler zu berechnen, legt er die Fehlermeldung in die Zelle. Sie können mehrere Zellen sehen, die diese Fehlermeldung als einen Wert anzeigen. Erstellen eines gewichteten gleitenden Durchschnitts in 3 Schritten Überblick über den gleitenden Durchschnitt Der gleitende Durchschnitt ist ein statistisches Verfahren, das verwendet wird, um kurzfristige Schwankungen in einer Reihe von Daten auszugleichen Leichter erkennen längerfristige Trends oder Zyklen. Der gleitende Durchschnitt wird manchmal als ein rollender Durchschnitt oder ein laufender Durchschnitt bezeichnet. Ein gleitender Durchschnitt ist eine Reihe von Zahlen, die jeweils den Durchschnitt eines Intervalls einer bestimmten Anzahl von vorherigen Perioden darstellen. Je größer das Intervall, desto mehr Glättung erfolgt. Je kleiner das Intervall, desto mehr gleicht der gleitende Durchschnitt den tatsächlichen Datenreihen. Gleitende Mittelwerte führen die folgenden drei Funktionen aus: Glättung der Daten, was bedeutet, die Anpassung der Daten an eine Zeile zu verbessern. Verringerung der Wirkung von temporären Variation und zufälligen Rauschen. Hervorhebung von Ausreißern über oder unter dem Trend. Der gleitende Durchschnitt ist eine der am häufigsten verwendeten statistischen Techniken in der Industrie, um Daten-Trends zu identifizieren. Beispielsweise sehen Verkaufsmanager häufig dreimonatige Bewegungsdurchschnitte von Verkaufsdaten. Der Artikel wird einen zweimonatigen, dreimonatigen und sechsmonatigen einfachen gleitenden Durchschnitt der gleichen Verkaufsdaten vergleichen. Der gleitende Durchschnitt wird sehr häufig in der technischen Analyse von Finanzdaten wie Aktienrenditen und in der Volkswirtschaft verwendet, um Tendenzen in makroökonomischen Zeitreihen wie Beschäftigung zu lokalisieren. Es gibt eine Anzahl von Variationen des gleitenden Durchschnitts. Die am häufigsten verwendeten sind der einfache gleitende Durchschnitt, der gewichtete gleitende Durchschnitt und der exponentielle gleitende Durchschnitt. Die Durchführung jeder dieser Techniken in Excel wird im Detail in separaten Artikeln in diesem Blog behandelt werden. Hier ist ein kurzer Überblick über jede dieser drei Techniken. Simple Moving Average Jeder Punkt in einem einfachen gleitenden Durchschnitt ist der Durchschnitt einer bestimmten Anzahl von vorherigen Perioden. Ein Link zu einem anderen Artikel in diesem Blog, der eine detaillierte Erläuterung der Implementierung dieser Technik in Excel bereitstellt, ist wie folgt: Gewichtete Moving Average Points im gewichteten gleitenden Durchschnitt stellen ebenfalls einen Durchschnitt einer bestimmten Anzahl von vorherigen Perioden dar. Der gewichtete gleitende Durchschnitt bezieht sich auf eine unterschiedliche Gewichtung auf bestimmte vorhergehende Perioden, oft werden die jüngeren Perioden größeres Gewicht gegeben. Dieser Blog-Artikel liefert eine ausführliche Erläuterung der Implementierung dieser Technik in Excel. Exponential Moving Average Punkte im exponentiellen gleitenden Durchschnitt stellen auch einen Durchschnitt einer bestimmten Anzahl von vorherigen Perioden dar. Exponentielle Glättung setzt Gewichtungsfaktoren auf frühere Perioden, die exponentiell abnehmen und niemals Null erreichen. Als Ergebnis berücksichtigt die exponentielle Glättung alle vorherigen Perioden anstelle einer bestimmten Anzahl früherer Perioden, die der gewichtete gleitende Durchschnitt aufweist. Eine Verknüpfung zu einem anderen Artikel in diesem Blog, der eine ausführliche Erläuterung der Implementierung dieser Technik in Excel bereitstellt, ist wie folgt: Im folgenden wird der dreistufige Prozess zum Erstellen eines gewichteten gleitenden Durchschnitts von Zeitreihendaten in Excel beschrieben: Schritt 1 8211 Diagramm der ursprünglichen Daten in einem Zeitreihen-Diagramm Das Liniendiagramm ist das am häufigsten verwendete Excel-Diagramm, um Zeitreihen-Daten zu grafisch darstellen. Ein Beispiel für ein solches Excel-Diagramm, das verwendet wird, um 13 Perioden von Verkaufsdaten zu plotten, wird wie folgt gezeigt: Schritt 2 8211 Erstellen des gewichteten gleitenden Mittelwertes mit Formeln in Excel Excel stellt nicht das Mittelwert-Werkzeug im Datenanalyse-Menü zur Verfügung, so dass die Formeln sein müssen Manuell aufgebaut. In diesem Fall wird ein 2-Intervall-gewichteter gleitender Durchschnitt durch Anwenden eines Gewichts von 2 auf die jüngste Periode und eines Gewichts von 1 auf die vorherige Periode erzeugt. Die Formel in Zelle E5 kann bis Zelle E17 kopiert werden. Schritt 3 8211 Hinzufügen der gewichteten gleitenden Durchschnittsreihe zum Diagramm Diese Daten sollten nun dem Diagramm hinzugefügt werden, das die ursprüngliche Zeitlinie der Verkaufsdaten enthält. Die Daten werden einfach als eine weitere Datenreihe in das Diagramm aufgenommen. Um dies zu tun, klicken Sie mit der rechten Maustaste irgendwo auf dem Diagramm und ein Menü wird Pop-up. Hit Select Data, um die neue Datenreihe hinzuzufügen. Die gleitende Mittelreihe wird hinzugefügt, indem das Dialogfeld Edit-Serie wie folgt ergänzt wird: Das Diagramm, das die ursprüngliche Datenreihe enthält, und das 2-Intervall-gewichtete gleitende Mittel wird wie folgt dargestellt. Beachten Sie, dass die gleitende mittlere Linie ein wenig glatter ist und die Rohdatenwerte über und unter der Trendlinie deutlich sichtbarer sind. Auch der Gesamttrend ist deutlich sichtbarer. Ein 3-Intervall gleitender Durchschnitt kann erstellt werden und auf dem Diagramm mit fast dem gleichen Verfahren wie folgt platziert werden. Beachten Sie, dass der jüngsten Periode das Gewicht von 3 zugewiesen wird, der Zeitraum vor dem zugewiesen und das Gewicht von 2, und der Zeitraum vor, dem ein Gewicht von 1 zugewiesen wird. Diese Daten sollten nun dem Diagramm hinzugefügt werden, das das Original enthält Zeit-Linie der Verkaufsdaten zusammen mit der 2-Intervall-Serie. Die Daten werden einfach als eine weitere Datenreihe in das Diagramm aufgenommen. Um dies zu tun, klicken Sie mit der rechten Maustaste irgendwo auf dem Diagramm und ein Menü wird Pop-up. Hit Select Data, um die neue Datenreihe hinzuzufügen. Die gleitende Durchschnittsreihe wird hinzugefügt, indem das Dialogfeld Edit-Serie wie folgt ergänzt wird: Wie erwartet, tritt ein etwas mehr Glättung mit dem gewichteten 3-Intervall-gleitenden Durchschnitt auf als mit dem gewichteten 2-Intervall-gleitenden Durchschnitt. Zum Vergleich wird ein 6-Intervall gewichteter gleitender Durchschnitt berechnet und dem Diagramm auf die gleiche Weise wie folgt hinzugefügt. Man beachte, daß die zunehmend abnehmenden Gewichte, die als Perioden zugeordnet sind, in der Vergangenheit entfernter werden. Diese Daten sollten nun dem Diagramm hinzugefügt werden, das die ursprüngliche Zeitlinie der Verkaufsdaten zusammen mit der 2- und 3-Intervallreihe enthält. Die Daten werden einfach als eine weitere Datenreihe in das Diagramm aufgenommen. Um dies zu tun, klicken Sie mit der rechten Maustaste irgendwo auf dem Diagramm und ein Menü wird Pop-up. Hit Select Data, um die neue Datenreihe hinzuzufügen. Die gleitende Durchschnittsreihe wird hinzugefügt, indem das Dialogfeld Edit-Serie wie folgt ergänzt wird: Wie erwartet, ist der 6-Intervall-gewichtete gleitende Durchschnitt signifikant glatter als die gewichteten 2 oder 3-gewichteten gleitenden Mittelwerte. Ein glatterer Graph paßt genau auf eine gerade Linie. Analysieren der Prognosegenauigkeit Die beiden Komponenten der Prognosegenauigkeit sind die folgenden: Prognosevorhersage 8211 Die Tendenz einer Prognose, konstant höher oder niedriger als tatsächliche Werte einer Zeitreihe zu sein. Die Prognosevorspannung ist die Summe aller Fehler, geteilt durch die Anzahl der Perioden, wie folgt: Eine positive Bias gibt eine Tendenz zur Unterprognose an. Eine negative Vorspannung gibt eine Tendenz zur Überprognose an. Bias misst nicht die Genauigkeit, da positiver und negativer Fehler sich gegenseitig aufheben. Prognosefehler 8211 Die Differenz zwischen Istwerten einer Zeitreihe und den prognostizierten Werten der Prognose. Die gebräuchlichsten Maßnahmen des Prognosefehlers sind die folgenden: MAD 8211 Mean Absolute Deviation MAD berechnet den durchschnittlichen Absolutwert des Fehlers und wird mit folgender Formel berechnet: Die Mittelung der Absolutwerte der Fehler eliminiert den Abbruch von positiven und negativen Fehlern. Je kleiner der MAD, desto besser ist das Modell. MSE 8211 Mean Squared Error MSE ist ein beliebtes Maß für den Fehler, der die Abbruchwirkung von positiven und negativen Fehlern beseitigt, indem die Quadrate des Fehlers mit folgender Formel summiert werden: Große Fehlerterme tendieren dazu, MSE zu übertreiben, da die Fehlerterme alle quadriert sind. RMSE (Root Square Mean) reduziert dieses Problem, indem es die Quadratwurzel von MSE nimmt. MAPE 8211 Mittlerer absoluter Prozentfehler MAPE eliminiert auch den Abbrechen von positiven und negativen Fehlern durch Summieren der Absolutwerte der Fehlerterme. MAPE berechnet die Summe der prozentualen Fehlerterme mit folgender Formel: Durch Summieren von prozentualen Fehlertermen kann MAPE verwendet werden, um Prognosemodelle, die unterschiedliche Maßstäbe verwenden, zu vergleichen. Berechnung von Bias, MAD, MSE, RMSE und MAPE in Excel Für die gewichtete Moving Average Bias werden MAD, MSE, RMSE und MAPE in Excel berechnet, um die gewichteten 2-Intervall-, 3-Intervall - und 6-Intervalle zu bewerten Durchschnittliche Prognose in diesem Artikel erhalten und wie folgt dargestellt: Der erste Schritt ist die Berechnung von E t. E t 2. E t, E t Y t-act. Und dann die Summe dann wie folgt berechnet werden: Bias, MAD, MSE, MAPE und RMSE können wie folgt berechnet werden: Es werden nun dieselben Berechnungen durchgeführt, um Bias, MAD, MSE, MAPE und RMSE für den 3-Intervall-gewichteten gleitenden Durchschnitt zu berechnen. Bias, MAD, MSE, MAPE und RMSE können wie folgt berechnet werden: Es werden die gleichen Berechnungen durchgeführt, um Bias, MAD, MSE, MAPE und RMSE für den 6-Intervall-gewichteten gleitenden Durchschnitt zu berechnen. Bias, MAD, MSE, MAPE und RMSE können wie folgt berechnet werden: Bias, MAD, MSE, MAPE und RMSE werden für die 2-Intervall-, 3-Intervall - und 6-Intervall-gewichteten Bewegungsdurchschnitte wie folgt zusammengefasst. Der 2-Intervall-gewichtete gleitende Durchschnitt ist das Modell, das am ehesten an die tatsächlichen Daten passt, wie es erwartet wird. 160 Excel Master Series Blog Verzeichnis Statistische Themen und Artikel in jedem Thema
No comments:
Post a Comment